
Recyclable and Reusable Pd(OAc)₂/DABCO/PEG-400 System for Suzuki-Miyaura Cross-Coupling Reaction

Jin-Heng Li,* Wen-Jie Liu, and Ye-Xiang Xie

Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China

jhli@hunnu.edu.cn

Received February 24, 2005

A stable and efficient Pd(OAc)₂/DABCO (triethylenediamine) catalytic system for Suzuki–Miyaura cross-coupling reaction has been developed. In the presence of Pd(OAc)₂ and DABCO, coupling of aryl halides with arylboronic acids was carried out smoothly to afford good to excellent yields and high turnover numbers (TONs) (the maximal TONs were up to 960 000 for the reaction of 1-iodo-4-nitrobenzene with phenylboronic acid) using PEG-400 as the solvent. Moreover, the Pd(OAc)₂/DABCO/PEG-400 system could be recycled and reused five times without any loss of catalytic activity for aryl iodides and bromides.

Introduction

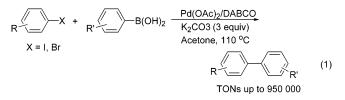
The biaryl nucleus is found in many natural and synthetic products that display a wide range of biological activity.¹ Consequently, considerable effort has been directed to the development of efficient and selective methods for the synthesis of biaryls.²⁻¹⁴ Besides the Ullmann coupling reaction,^{2,3} the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction has become one of the most widely useful tools for the synthesis of biaryls in organic chemistry.^{2c,4-14} Generally, the phosphine ligands are used to complex the palladium species, resulting in excellent results for the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction.^{2c,4,5} However, many phosphines are sensitive to air and moisture with conversion to, for example, phosphine oxide species. In such cases, reuse of these catalysts is difficult.¹⁵ There-

10.1021/jo050353m CCC: $330.25\ \mbox{@}\ 2005$ American Chemical Society Published on Web 06/02/2005

fore, the development of phosphine-free recycling catalytic systems to overcome these difficulties is considered to be one of the most challenging fields in organic chemistry.^{5u,14} There are also significant economical and

⁽¹⁾ Bringmann, G.; Gunther, C.; Ochse, M.; Schupp, O.; Tasler, S. In *Progress in the Chemistry of Organic Natural Products*; Herz, W., Falk, H., Kirby, G. W., Moore, R. E., Eds.; Springer: New York, 2001; Vol. 82, pp 1–293.

^{(2) (}a) Bringmann, G.; Walter, R.; Weirich, R. Angew. Chem., Int. Ed. Engl. 1990, 29, 977. (b) Hegedus, L. S. In Organometallics in Synthesis; Schlosser, M., Ed.; J. Wiley & Sons: Chichester, 2002; p1123. (c) Handbook of Organopalladium Chemistry for Organic Synthesis; Negishi, E., Ed.; Wiley-Interscience: New York, 2002.


⁽³⁾ For selected Ullmann coupling reactions, see: (a) Zhang, S.; Zhang, D.; Liebeskind, L. S. J. Org. Chem. **1997**, 62, 2312. (b) Li, J.-H.; Xie, Y.-X.; Yin, D.-L. J. Org. Chem. **2003**, 68, 9867 and reference cited therein.

⁽d) For reviews, see: (a) Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457. (b) Diederich, F.; Stang, P. J. Metal-Catalyzed Cross-coupling Reactions, Wiley-VCH: Weinheim, 1998. (c) Miyaura, N. Cross-Coupling Reaction, Springer: Berlin, 2002. (d) Bellina, F.; Carpita, A.; Rossi, R. Synthesis 2004, 2419. (e) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127.

⁽⁵⁾ For recently selected papers on phosphine – palladium catalysts, see: (a) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc. 1998, 120, 9722. (b) Wolfe, J. P.; Singer, R. A.; Yang, B. H.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 9550. (c) Littke, A. F.; Dai, C.; Fu, G. C. J. Am. Chem. Soc. 2000, 122, 4020. (d) Bedford, R. B.; Cazin, C. S. J.; Hazelwood, S. L. Angew. Chem., Int. Ed. 2002, 41, 4120. (e) Feuerstein, M.; Berthiol, F.; Doucet, H.; Santelli, M. Synlett 2002, 1807. (f) Mori, K.; Yamaguchi, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2002, 124, 11572. (g) Yin, J.; Rainka, M. P.; Zhang, X.-X.; Buchwald, S. L. J. Am. Chem. Soc. 2002, 124, 1162. (h) Littke, A. F.; Schwarz, L.; Fu, G. C. J. Am. Chem. Soc. 2002, 124, 6343. (i) Littke, A. F.; Fu, G. C. Angew. Chem., Int. Ed. 2002, 41, 4176. (j) Kwong, F. Y.; Lam, W. H.; Yeung, C. H.; Chan, K. S.; Chan, A. S. C. Chem. Commun. 2004, 1922. (k) Kwong, F. Y.; Chan, K. S.; Yeung, C. H.; Chan, A. S. C. Chem. Commun. 2004, 2336. (l) Brenstrum, T.; Gerristma, D. A.; Adjabeng, G. M.; Frampton, C. S.; Britten, J.; Robertson, A. J.; McNulty, J.; Capretta, A. J. Org. Chem. 2004, 69, 7635. (m) Baillie, C.; Zhang, L.; Xiao, J. J. Org. Chem. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 45, 9525. (p) Zhang, W.; Shi, M. Tetrahedron Lett. 2004, 69, 7919. (o) Mukherjee, A.; Sarkelli, M. Zorgano

<sup>Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685.
(6) For recent reviews on N-heterocyclic carbene-palladium catalysts, see: (a) Herrmann, W. A. Angew. Chem., Int. Ed. 2002, 41, 1290.
(b) Yong, B. S.; Nolan, S. P. Chemtracts: Org. Chem. 2003, 205.</sup>

environmental reasons for developing recyclable catalytic reactions from both academic and industrial perspectives. To satisfy both recyclability and environmental concerns, a more facile method is to immobilize the catalyst in a liquid phase by dissolving it into a nonvolatile and nonmixing liquid, such as PEG.¹⁶ Recently, we found that DABCO was a highly efficient ligand for the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction, providing high turnover numbers (TONs) (up to 950 000 TONs for the reaction of PhI and *p*-chlorophenylboronic acid) (eq 1).^{12c} Thus, we expected to employ the palladium

complex to effect the Suzuki-Miyaura cross-coupling reaction on a recyclable basis. Here, we report that Pd-(OAc)₂/DABCO, in combination with PEG-400 as the solvent, is an extremely effective and reusable system for the coupling of aryl halides with arylboronic acids.

Results and Discussion

As shown in Table 1, the catalytic activity of Pd(OAc)₂/ DABCO for the Suzuki–Miyaura reaction between 1-iodo-

(8) For a representative paper on C,N-based 2-aryl-2-oxazolinespalladium catalyst, see: Tao, B.; Boykin, D. W. *Tetrahedron Lett.* **2002**, *43*, 4955.

(9) For selected representative papers on aryloximes-palladium catalyst, see: (a) Alonso, D. A.; Nájera, C.; Pacheco, M. C. Org. Lett. **2000**, 2, 1823. (b) Botella, L.; Nájera, C. Angew. Chem., Int. Ed. **2002**, 41, 179.

(10) For a paper on arylimines-palladium catalyst, see: Bedford, R. B.; Cazin, C. S. *Chem. Commun.* **2001**, 1540.

(11) For recent representative papers on diazabutadiene-palladium catalysts, see: (a) Grasa, G. A.; Hillier, A. C.; Nolan, S. P. *Org. Lett.* **2001**, *3*, 1077. (b) Palencia, H.; Garcia-Jimenez, F.; Takacs, J. M. *Tetrahedron Lett.* **2004**, *45*, 3849.

(12) For the representative papers on amine-palladium catalysts, see: (a) Tao, B.; Boykin, D. W. *Tetrahedron Lett.* **2003**, *44*, 7993. (b) Tao, B.; Boykin, D. W. *J. Org. Chem.* **2004**, *69*, 4330. (c) Li, J.-H.; Liu, W.-J. *Org. Lett.* **2004**, *6*, 2809.

(13) For recent representative papers on other phosphine-free palladium catalysts, see: (a) Alonso, D. A.; Nájera, C.; Pacheco, M. C. J. Org. Chem. **2002**, 67, 5588 and reference cited therein. (b) de Vries, A. H. M. Mulders, J. M. C. A.; Mommers, J. H. M.; Henderickx, H. J. W.; de Vries, J. G. Org. Lett. **2003**, 5, 3285 and references therein.

(14) For selected papers on recyclable palladium catalysts for Suzuki-Miyaura cross-coupling reaction: (a) Kaneda, K.; Terasawa, M.; Imanaka, T.; Teranishi, S. Fundam. Res. Homogeneous Catal. 1973, 3, 671. (b) Terasawa, M.; Kaneda, K.; Imanaka, T.; Teranishi, S. J. Organomet. Chem. 1978, 162, 403. (c) Andersson, C.-M.; K. Karabelas, A. Hallberg, J. Org. Chem. 1985, 50, 3891. (d) Zhang, Z. Y.; Hu, H. W.; Kao, T. Y. React. Polym. Ion. Exch. Sorbents 1988, 9, 249. (e) Zhang, Z. Y.; Pan, Y.; Hu, H. W.; Kao, T. Y. Synth. Commun. 1990, 20, 3563. (f) Jang, S. B. Tetrahedron Lett. 1997, 38, 4421. (g) Bergbreiter, D. E.; LOsburn, P.; Liu, Y. S. J. Am. Chem. Soc. 2000, 122, 1243. (i) Akiyama, R.; Kobayashi, S. Angew. Chem., Int. Ed. 2001, 40, 3469. (j) an der Heiden, M.; Plenio, H. Chem. Eur. J. 2004, 10, 1789. (k) Kim, N.; Kwon, M. S.; Bravk, D. H.; Styring, P. Tetrahedron Lett. 2004, 45, 7057. (l) Phan, N. T.

(15) (a) Pignolet, L. H., Ed.; Homogeneous Catalysis with Metal Phosphine Complexes; Plenum: New York, 1983. (b) Parshall, G. W.; Ittel, S. Homogeneous Catalysis; Wiley and Sons: New York, 1992. (c) Collman, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science: Mill Vallley, CA. 1987.

 TABLE 1. Efficient Suzuki-Miyaura Cross-Coupling

 Reaction of Aryl Iodides and Bromides with Arylboronic

 Acids in PEG-400^a

$B \xrightarrow{-} X + B \xrightarrow{-} B(OH)_2 -$							
	1	2 PEG-4	100, 110 °C	3-13			
Entry	ArX	ArB(OH) ₂	Pd (mol%)	Time (h)	Yield $(\%)^{b}$		
1	02N-(1a)	(2a)	0.1	6	96 (3)		
2	02N-(1a)	$ - \mathbf{B}(\mathbf{OH})_2}$ (2a)	0.0001	48	96 (3)		
3	NO ₂ (1b)	$\bigcirc -B(OH)_2$ (2a)	0.0001	48	93 (4)		
4	NO ₂ (1c)	$\bigcirc -B(OH)_2$ (2a)	0.0001	48	90 (4)		
5	(1d)	$\overline{\bigcirc}^{-B(OH)_2}(2a)$	0.1	10	98 (5)		
6	(1d)	г-√в(он) ₂ (2b)	0.1	10	94 (6)		
7	(1d)	$F_3C \rightarrow B(OH)_2(2c)$	0.1	10	96 (7)		
8	(1d)	сі—()-в(ОН) ₂ (2d)	0.1	4	89 (8)		
9	(1d)	$MeO - B(OH)_2$ (2e)	0.1	4	87 (9)		
10	MeO-(]-(1e)	(2а)	0.1	4	93 (9)		
11	мео-(1е)	$\bigcirc -B(OH)_2$ (2a)	0.001	15	90 (9)		
12)	(2 н) ₂ (2 а)	0.1	10	96 (10)		
13)-С)-в ^г (1f)	(Он) ₂ (2а)	0.01	14	96 (10)		
14) ₀─── [−] ^{Br} (1f)	г-(ОН) ₂ (2b)	0.1	20	97 (11)		
15	(1 g)	ғ-(2b)	0.1	20	94 (6)		
16	(1 g)	мео	0.1	24	95 (9)		
17	Me (1h)	$\overset{\text{MeO}-\overset{}{\frown} B(OH)_2}{(2e)}$	0.1	24	75 (12)		
18	MeO	(2a)	3	2	100 (9)		
19	MeO	(2a)	0.1	16	99 (9)		
20 ^c	BrBr (1j)	г-√ ^{в(ОН)} 2(2b)	0.1	20	74 (13)		

 a Unless otherwise indicated, the reaction conditions were as follows: 1 (0.5 mmol), 2 (0.7 mmol), Pd(OAc)_2/DABCO (1:2), and K_2CO_3 (3 equiv) in PEG-400 (2 g) at 110 °C. ^{*b*} Isolated yield. ^{*c*} 1j (0.25 mmol).

4-nitrobenzene (1a) and phenylboronic acid (2a) was first evaluated. The results indicated that Pd(OAc)₂/DABCO as the catalytic systems is highly efficiently, proving high TONs up to 910 000 for the reaction. In the presence of 0.1 mol % of Pd, 96% yield of the desired product 3 was obtained for 6 h (entry 1). A high yield of 3 was still isolated after prolonged heating when the loadings of Pd were decreased to 0.0001 mol % (entry 2). Treatment of **1b** and **1c** bearing an electron-withdrawing group with **2a**, respectively, also afforded high yields in the presence of 0.0001 mol % of Pd (entries 3 and 4). For coupling of aryl iodides bearing electron-neutral groups and electrondonating groups, the Pd(OAc)₂/DABCO catalytic system is still highly efficient. For example, 1-iodo-4-methoxybenzene (1e) was treated with 2a and 0.001% Pd afforded a 98% yield of the corresponding product 9 for 15 h (entry 10). The results showed that the reactions of iodobenzene

⁽⁷⁾ For a representative paper on thiourea-palladium catalyst, see: Dai, M.; Liang, B.; Wang, C.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 221.

⁽¹⁶⁾ For a selected representative paper on PEG as the media for the other cross-coupling reactions, see: Chandrasehar, S.; Narsihmulu, C.; Sultana, S. S.; Reddy, N. R. *Org. Lett.* **2002**, *4*, 4399.

 TABLE 2.
 TBAB-Promoted Suzuki-Miyaura

 Cross-Coupling Reaction of Aryl Chlorides with

 Arylboronic Acids in PEG-400^a

R1	≻ci + _{R'} ∠e	3 mol% Pd(OAc) 6 mol% DABCO 3(OH) ₂ TBAB, K ₂ CO ₃ PEG-400	2 →	
Entry	ArCl	ArB(OH) ₂ T	'ime (h) Yield $(\%)^{b}$
1 ^c) o (1k)	$\overline{}^{-B(OH)_2}(2a)$	15	54 (10)
2)-C-(1k)	-B(OH) ₂ (2a)	15	9 1 (10)
3)	ғ————————————————————————————————————	15	87 (11)
4	0 ₂ N-CI(11)	-B(OH) ₂ (2a)	3	92 (3)
5	(1m)	-B(OH) ₂ (2a)	20	75 (10)
6	(1m)	MeO	20	70 (9)
7	Me-CI(1n)	-B(OH) ₂ (2a)	22	61 (14)
8	MeO-CI(10)	-B(OH) ₂ (2a)	22	32 (9)
9^d	MeO-CI (10)	-B(OH) ₂ (2a)	22	40 (9)
10 ^{d, e}	MeO-CI (10)	-B(OH) ₂ (2a)	22	41 (9)

 a Unless otherwise indicated, the reaction conditions were as follows: **1** (0.5 mmol), **2** (0.7 mmol), Pd(OAc)₂ (3 mol %), DABCO (6 mol %), TBAB (0.1 equiv), and K₂CO₃ (3 equiv) in PEG-400 (2 g) at 110 °C. b Isolated yield. c Without TBAB. d TBAB (1.0 equiv). e KOH (3 equiv) instead of K₂CO₃.

(1d) with a number of arylboronic acid 2a-e, respectively, gave excellent results in the presence of 0.1 mol % of Pd (entries 5–9). However, the efficiency of Pd-(OAc)₂/DABCO was decreased to some extent for the coupling of aryl bromides with arylboronic acids (entries 11–19). The results demonstrated that aryl bromides were suitable substrates at the loadings of from 3 to 0.01 mol % Pd. It is noteworthy that the catalytic activity of Pd(OAc)₂/DABCO in PEG-400 is more active than those of the previous report in MeCN.^{12c} For example, in the presence of 0.1 mol %, coupling of **1i** with **2a** afforded 100% yield of **9** for 20 h in PEG-400 (entry 18), whereas only 42% yield was isolated after 48 h in MeCN.^{12c}

Compared with our previous results in MeCN,^{12c} the scope of the Pd(OAc)₂/DABCO catalytic system in PEG could be further extended to the coupling reactions of aryl chlorides $1\mathbf{k}-\mathbf{o}$ with arylboronic acids, and the results are summarized in Table 2. The results showed that TBAB¹⁷ was required to improve the Suzuki–Miyaura cross-coupling reaction of aryl chlorides. Without TBAB, only a 54% yield of 10 was isolated after 15 h from the reaction of 1-(4-chlorophenyl)ethanone (1**k**) with 2**a** in

the presence of 3 mol % of Pd(OAc)₂, 6 mol % of DABCO, and 3 equiv of K_2CO_3 , whereas 91% yield was obtained when 0.1 equiv of TBAB was added (entries 1 and 2). For coupling of aryl chlorides 1m-o, however, the efficiency of the catalytic system was decreased to some extent (entries 5–10). For example, treatment of chlorobenzene (1m) with 2a and 2e, respectively, afforded the corresponding coupled products 10 and 9 in moderate yields (entries 5 and 6). For coupling of deactivated aryl chloride 1o, only 41% yield of 9 was isolated even in the presence of 1 equiv of TBAB (entry 10).

We were gratified to observe that the Pd(OAc)₂/DABCO/ PEG-400 system could be recycled and reused five times without any loss of activity for the coupling reactions of 1e, 1f, and 1g with 2a or 2e, respectively (entries 1 and 3-5 in Table 3). Furthermore, the reaction was also successful using lower catalyst loadings. To check the reusability of the solvent as well as the catalyst, the coupling reaction of 1-iodo-4-methoxybenzene (1e) with 2a was first examined in the presence of 0.1 mol % of Pd. After initial experimentation, the reaction mixture was extracted with dry diethyl ether, and the PEG and Pd(OAc)₂/DABCO were solidified and subjected to a second run of the Suzuki-Miyaura reaction by charging with the same substrates (1-iodo-4-methoxybenzene, phenylboronic acid, and K₂CO₃). The results of five runs showed that they were almost consistent in yields and rates (93%, 91%, 94%, 95%, and 97%, respectively, for 4 h; entry 1). For the reaction of aryl bromide (1f) with 2a even in the presence of 3 mol % Pd, however, the activity of the system was decreased sharply in the second run due to the generation of palladium black. It is noteworthy that the presence of TBAB can rule out the generation of palladium black to make the catalytic system stably. The system for the reaction of aryl bromide (1f) with 2a could be recycled and reused five times without any loss of activity even in the presence of 0.01 mol % loading of Pd when 0.1 equiv of TBAB was added (entries 3 and 4). The suitable Pd loading for the recoverable and reusable coupling of bromobenzene (1g), respectively, were 3 mol % (entries 5–7). Although the Pd loadings could be decreased to 0.1 mol %, only moderate yields were obtained from the second through fourth runs. Unfortunately, the catalyst system could not be reused for the reaction of aryl chloride (11) with 2a (entry 8).

Conclusion

In summary, a highly efficient and reusable Pd(OAc)₂/ DABCO/PEG system for the Suzuki–Miyaura crosscoupling reaction has been developed. In the presence of Pd(OAc)₂ and DABCO, a number of aryl halides, including aryl iodides, bromides, and chlorides, were coupled with arylboronic acids smoothly and efficiently to produce good to excellent yields and high TONs (maximal TONs up to 960 000). As in the earlier reports,¹⁷ TBAB was required to improve the Suzuki–Miyaura cross-coupling reaction. Furthermore, the Pd(OAc)₂/DABCO/PEG-400 system could be recycled and reused five times without any loss of catalytic activity for aryl iodides and bromides. Currently, further efforts to extend the application of the system in other palladium-catalyzed transformations are underway in our laboratory.

⁽¹⁷⁾ For the representative papers on TBAB-promoted the crosscoupling reactions, see: (a) Selvakumar, K.; Zapf, A.; Beller, M. Org. *Lett.* **2002** *4*, 3031. (b) Yang, D.; Chen, Y.-C.; Zhu, N.-Y. Org. Lett. **2004**, *6*, 1557 and references therein.

TABLE 3.	Recovery and Ret	ise of the System	for the Suzuki–Miyaura	Cross-Coupling Reaction ^a
----------	------------------	-------------------	------------------------	---

Entry	ArX	ArB(OH) ₂	Pd	Time	Run 1	Run 2	Run 3	Run 4	Run 5	Overall
			(mol%)	(h)	(%)	(%)	(%)	(%)	(%)	yield (%)
1 ^b	MeO-(1e)	$\overline{}^{-B(OH)_2}(2a)$	0.1	4	93	91	94	95	97	94 (9)
2 ^{<i>b</i>})	→ -B(OH) ₂ (2a)	3	4	95	21	-	_	-	58 (10)
3	ک ^ل ے (1 f)	(2a)	3	4	97	94	94	91	98	95 (10)
4	o ^{-Br} (1f)	(2a)	0.01	14	96	92	94	95	94	94 (10)
5	────────────────────────────────────	MeO	3	8	93	97	94	95	91	94 (9)
6	С ^{—вг} (1g)	мео	0.1	20	99	74	77	75	-	81 (9)
7	────────────────────────────────────	г-√ ^{в(ОН)} 2(2b)	0.1	20	94	62	64	69	_	72 (6)
8	0 ₂ N-Cl(11)	(2a)	3	18	90	26	_	-	-	58 (3)

^{*a*} Unless otherwise indicated, the reaction conditions were as follows: **1** (0.5 mmol), **2** (0.7 mmol), Pd(OAc)₂/DABCO (1:2), TBAB (0.1 equiv), and K₂CO₃ (3 equiv) in PEG-400 (2 g) at 110 °C. ^{*b*} Without TBAB.

Experimental Section

Typical Experimental Procedure for the Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction in PEG-400. A mixture of aryl halide 1 (0.5 mmol), arylboronic acid 2 (0.7 mmol), Pd(OAc)₂/DABCO (1:2; the identical amount in Tables 1 and 2), K₂CO₃ (3 equiv), and PEG-400 (2 g) was added to a sealed tube and stirred at 110 °C for the desired time until complete consumption of the starting material as judged by TLC. After the mixture was extracted with dry diethyl ether (3 × 10 mL) and evaporated, the residue was purified by flash column chromatography (hexane or hexane/ ethyl acetate) to afford the desired coupled products **3–14**.

After extracting with diethyl ether, the mixture of $Pd(OAc)_2$, DABCO, and PEG-400 was solidified (cooled and then evapo-

rated under vacuo) and subjected to a second run of the Suzuki–Miyaura cross-coupling reaction by charging with the same substrates (aryl halide 1, arylboronic acid 2, and K₂CO₃).

Acknowledgment. We thank the National Natural Science Foundation of China (No. 20202002) for financial support.

Supporting Information Available: Analytical data and spectra (¹H and ¹³C NMR) for all the products 3-14. This material is available free of charge via the Internet at http://pubs.acs.org.

JO050353M